Jimmy Carter’s Good News And The Ever-Brightening Outlook For Melanoma

Former President Jimmy Carter teaches Sunday School class at Maranatha Baptist Church on Aug. 23 in Plains, Georgia, soon after he announced he was bring treated for cancer. (David Goldman/AP)

Former President Jimmy Carter teaches Sunday School class at Maranatha Baptist Church on Aug. 23 in Plains, Georgia, soon after he announced he was bring treated for cancer. (David Goldman/AP)

In August, former President Jimmy Carter announced that he was being treated for melanoma, a skin cancer that had spread to his liver and brain. Now, Carter says that his latest brain scan shows no sign of cancer spots.

This is not necessarily a “cure,” but it’s hard to imagine a more striking illustration of recent progress on treating malignant melanoma, once considered an imminent death sentence.

We sought some perspective from Dr. Elizabeth Buchbinder, a melanoma specialist at the Dana-Farber Cancer Institute.

Jimmy Carter says there’s no cancer showing up on his MRI. What does that mean?

EB: It’s incredibly exciting. It basically means that the lesions that were seen there before have resolved or disappeared or whatever term you’d like to use. And so it’s a great response. It’s what we would call a complete response on imaging, which is really really excellent, obviously.

The issue becomes this: We have limits to what our imaging can see. So we never know that there’s no cancer anywhere. But we know that there is none we can detect, which is very exciting. So all the cancer that we could see previously is now no longer detectable.

What does that mean happened biologically?

Biologically, he had a couple things happen, because he got radiation, which damaged his cancer, and he got [the drug] Keytruda. And what the Keytruda did is it turned on the immune system to act against those tumors. So the immune system then attacks and basically gets rid of cancer cells. And so very likely his immune system got turned on, attacked those cancer cells, eradicated what was there, and hopefully is continuing to eradicate anything we can’t see, and it now recognizes the cancer as something that it needs to get rid of.

When you have a great response like this, is it likely to remain so great?

“We’re really seeing a lot of people who are living a long, long time with either minimally detectable or no detectable cancer.”

– Dr. Elizabeth Buchbinder

Very likely. With immune therapy in particular, and even going back to some of the earliest immune therapies that we have used, such as an older one called Interleukin 2 — when it’s used, if you have a complete response and no longer have any detectable cancer, the chances of that continuing are much much higher than if you just see a little bit of shrinkage, or some degree of shrinkage but can still detect cancer. So chances are very, very good that Jimmy Carter will continue to do well going forward and not have trouble with cancer in the future. We can never say 100 percent, but this is definitely a very good response.

I imagine you now need to throw a bit of cold water on all the people who will call and say ‘I want what he got.’ What would you say to those patients? Continue reading


Carter’s Cancer: Melanoma Is ‘Bad’ Skin Cancer, But Better To Have Now Than Past

Former President Jimmy Carter discusses his cancer diagnosis at the Carter Center in Atlanta, on Thursday. Carter, 90, said the cancer has spread to his brain, and he will undergo radiation treatment at Emory University Hospital. (Phil Skinner/AP)

Former President Jimmy Carter discusses his cancer diagnosis at the Carter Center in Atlanta, on Thursday. Carter, 90, said the cancer has spread to his brain, and he will undergo radiation treatment at Emory University Hospital. (Phil Skinner/AP)

Ninety-year-old former President Jimmy Carter announced Thursday morning that he’s being treated for melanoma, and the cancer has been found in his brain and liver.

My reaction: “Melanoma? Isn’t that supposed to start with weird spots on your skin?”

I turned to Dr. Elizabeth Buchbinder, melanoma expert at Dana-Farber Cancer Institute. Our conversation, lightly edited:

So is our popular conception of melanoma — odd, mole-like things on sun-hit skin — not consonant with reality?

So often, when people think of skin cancer, they think of the more traditional basal cell, squamous cell, where you go in to the dermatologist, they cut it off, maybe you need to get a little bit of liquid nitrogen, or something else, but really, once they’ve done that, the risk in terms of it affecting your survival or anything else is very low. They’re really very controllable cancers.

Melanoma is kind of the exact opposite of that. It’s the real bad actor among the skin cancers, because melanoma likes to get into the blood and spread. It likes to go anywhere it wants in the body. Some of the places it likes to particularly go are the liver and the brain. It can also go into the lungs and other areas of the body. It’s kind of the ‘bad boy’ of the skin cancers; it’s definitely a bad actor in terms of cancers in general, but then also in terms of skin cancers as a group.

And you can have melanoma without ever having seen a spot?

First of all, melanomas predominantly arise on the skin and are most commonly associated with sun or UV exposure. However, they can arise in areas of the skin that never see the sun. They can also arise on other membranes that are not visible; for example, the inside of the mouth or the inside of the intestine. They can also arise within the eye.

“Melanoma treatment is so exciting right now. The real cutting-edge is basically using the immune system to fight the cancer itself.”

– Dr. Elizabeth Buchbinder,
Dana-Farber Cancer Institute

Although most of them arise on skin that are seen, some melanomas may arise on the skin and never necessarily be detected. We have a fair rate of what’s called ‘unknown primary,’ where we never find that skin spot, and one of the thoughts is that that skin spot either has been attacked by the person’s own immune system and kind of gotten rid of, or that something else has happened; it’s been scraped off or itched, or who knows? It just never was found. So there’s some rate of that.

And so what is the cutting-edge of melanoma research and treatment now?

Melanoma treatment is so exciting right now. The real, real cutting-edge is basically using the immune system to fight the cancer itself. What we’ve known for a long time is that the immune system has a relationship with cancer, and sometimes can keep it from growing or prevent new cancers from forming, but often the cancer kind of overcomes that somehow. And what’s happened with new treatments and with new research and understanding of how the immune system works is we’ve been able to use medications to make the immune system attack the cancer. Continue reading


Can We Use The Crowd To Beat Cancer? Seeking Patient Data To Save Lives

You’re diagnosed with cancer. Your life changes in an instant and you’re faced with big choices and no road map. Consider this scary statistic: Five-year survival rates for common cancers can vary by 50 percent depending on where a patient is treated. And this: You often can’t get precise answers on which type of cancer responds to which type of treatment.

The uncertainties could drive anyone mad; and if you’re like Marty Tenenbaum, a cancer survivor, computer scientist and Internet entrepreneur who thrives on data, it can make you truly crazy. “Patients are dying because information is not evenly distributed – which is outrageous in the Internet age,” Tenenbaum says. “Your treatment is based on your mail ZIP code, not the molecular ZIP code of your tumor.”

He cites the 50 percent variation number often as evidence that better information can save many lives. He recalls when he first learned of his cancer, “I went running around to six different doctors, each had a different treatment recommendation, but there was no data with which to make a rational decision on what would work best for me.”

Tenenbaum was diagnosed with metastatic melanoma in 1998 at the age of 55. “The wicked thing about melanoma is that it can metastasize anywhere — and it does,” he said. A cure, in his case “was almost out of the question…treatment options were minimal.” Tenenbaum’s cancer had spread such that surgery wasn’t considered viable. Still, Tenenbaum, a tenacious guy who got rich in the boom, set out to find a surgeon, which he did — Donald Morton, the renowned cancer surgeon and researcher.

Sixteen years later, Tenenbaum is now an advocate for what he calls “precision oncology 3.0” – using molecular profiling and sophisticated computational methods to reverse-engineer the putative networks that drive a given patient’s tumor, and attack these drivers with combinations of targeted therapies. He founded the nonprofit Cancer Commons to level the cancer playing field so that all patients get access to the same, top-rate data. “Awareness is not the problem today,” he says. “We need science, data, so patients can approach their cancer in a systematic way.”

Every patient experiences this: you face a life or death decision, which often must be made in days. You go out for second opinions and get conflicting recommendations. You’re thrust into this strange world with no maps, no Zagat’s, no nothing.

Cancer Commons, which exploits the “convergence of recent developments in genomics, big data informatics, social networks, and personalized medicine,” aims to radically transform cancer research and treatment. Here’s how it works. If you’re a cancer patient, you share your data (anonymously) — what type of cancer you have, its molecular signature (if you’ve got that), what types of therapies and treatments you’ve tried and whether they worked or didn’t.

What you get in return is highly targeted news and updates on developments that may be clinically relevant to you — including results from the latest medical conferences and researchers, tweets on the top takeaways from the annual personalized medicine meetings, and relevant patient blog postings. You also get access to a curated data base linking molecular subtypes of cancer, with recommended treatments and trials. That knowledge is continually updated based on scientific developments and actual patient outcomes.

When the Commons grows big enough, the thinking goes, there will be a large pool of useable data available for all. (Currently there are only a couple of thousand patients involved, with the focus on melanoma, lung and prostate cancer, but Tenenbaum says a big expansion is in the works.) “Once we get enough data, patients will be able to know, for the first time, what their peers are actually doing and how it’s working. If they then report back what they did, a virtuous learning cycle ensures, resulting in better and better data.”

Put another way, he says Cancer Commons hopes to build “a consensus model of the various subtypes of cancer and how best to treat them with the latest targeted- and immuno-therapies, to learn from each patients’ outcomes whether the experts got it right or not, and then to rapidly disseminate the results in time to help the next patient.”

I caught up with Tenenbaum recently at MIT in Cambridge where he was giving a talk — provocatively titled, “How To Beat Cancer.” In it, he argued that often, what are considered to be “incurable” cancer cases may, actually, “be beatable by exploiting biological features unique to each individual’s cancer.” Like others, he suggests, “we’re on the cusp of managing cancer as a chronic disease using new cocktails of targeted therapies much like treatment for HIV.”

He agreed to answer a few more questions.  Here, edited and condensed is some of our conversation:

RZ: You talk about a basic problem in cancer care that hinges on patient data. What is the problem?

MT: Every patient experiences this: you face a life or death decision, which often must be made in days. You go out for second opinions and get conflicting recommendations — each doctor knows what they know and they each know different things. You’re thrust into this strange world with no maps, no Zagat’s, no nothing. So no one could tell me: ‘Which treatment is best for me?’ [Part of the problem is that] no one shares data — neither the de-identified data from personal health records, nor the data that drug companies collect during clinical trials – not even the data from the control arms of trials, or from failed trials. The only ones with the incentive and urgency to share the data are cancer patients.

After your cancer recurred and you were enrolled in a clinical trial, you describe a kind of “aha” moment. Can you explain?

In 2003, I entered a cancer vaccine trial. Shortly after I went off the vaccine I had a recurrence. I opted for more surgery and went back on the vaccine, but after six months the vaccine was no longer available. The trial had been halted because, statistically, patients on the vaccine arm were not doing better than those on the control arm. However, the vaccine appeared to help some people – and I was fortunate to be among them, having experienced a particularly strong immune response. The vaccine company had no interest in trying to understand why a few patients, like me, benefitted. This is a big shortcoming with clinical trials based on population statistics…to do science, you really need to figure out why it worked in one person and why it didn’t in another person. Many good drugs have been rejected by failing to do this level of analysis.

How is Cancer Commons unique? There are other certainly other data-sharing, disease specific, patient-driven advocacy groups out there, Patients Like Me, for instance.

We’re patient focused and science based; Our mission is to aggregate and analyze data, to provide patients with the best information — up-to-the-moment, personalized, and actionable to help them make informed decisions…like a Lonely Planet guide to cancer.

Patients have the legal right to their data — the HIPAA law just changed this year and it makes it much easier for patients to get their data in digital form. But beyond that we want to build this consensus knowledge base — what are the molecular subtypes of this cancer and how should each subtype be treated.

Typically, tumors are analyzed with a genomic or panomic panel — you have data, then you have treatments recommended by experts based on trials. You want patients and their doctors to be able to consult this knowledge base, determine their subtype, determine their options or have a different option. The point is, do whatever it is you want, but tell us what you did and how it worked so this becomes a virtuous learning cycle. This way we can continually test the hypotheses of experts and continually refine them. Cancer is not generic. Patients in the same group who were thought to have the same disease respond differently. For instance, the current melanoma model has about 30 actionable subtypes [a few years ago we knew about 3] and this comes from widespread availability of molecular testing.

[An aside: Exhibit A when it comes to the potential of this molecularly personalized diagnostic testing and treatment is the high-profile case of Lukas Wartman, a young doctor diagnosed with Acute Lymphoblastic Leukemia, a cancer of the blood that is highly treatable in children, but often fatal in adults. Doctors discovered that in Wartman’s case, a gene called FLT3 was being expressed at a much higher level than normal. So, using a drug-gene interaction database, doctors at the Genome Institute at Washington University “found a drug, Sutent, normally used in kidney cancer that targets a “hyperactive” FLT3 gene.” Wartman’s cancer went into remission.]

Why do you compare the current state of cancer care to the early days of AIDS?

Genetically, every cancer appears to be unique, and like AIDS, requires a custom cocktail of three or more drugs to treat it, and prevent it from evolving into a resistant form. With thousands of subtypes and tens of thousands of therapy combinations , the current clinical trials system, which was designed to test drugs as monotherapies on homogeneous populations, is unsustainable. There simply aren’t enough patients to populate a randomized trial for each rational drug combination.

For this reason, we’re designing Cancer Commons to support rapid proof of concept studies in small numbers of patients — or even individuals – by connecting them directly with researchers interested in their subtype of cancer. Continue reading