diagnostics

RECENT POSTS

From Cancer Drugs To Gut Bugs: 10 Medical Trends To Watch In 2016

Former President Jimmy Carter, whose latest brain scans show no sign of the melanoma he was diagnosed with, is a high-profile example of recent advances in treating cancer. (David Goldman/AP)

Former President Jimmy Carter, whose latest brain scans show no sign of the melanoma he was diagnosed with, is a high-profile example of recent advances in treating cancer. (David Goldman/AP) 

By Dr. Michael Misialek
Guest contributor

2016 is the year of the monkey, according to the Chinese calendar, but from my corner of the medical world — as a pathologist who tries to stay current on the medical big picture — it’s looking more like the year of the crab (cancer, that is).

Looking through my microscope, I expect the most striking medical advances next year in the field of cancer treatment. More broadly, here’s what I expect in the year to come, starting with scientific and technological progress and then getting into the health care system.

1. Cancer: Immunotherapy And More

Immunotherapy for cancer exploded in 2015. What is immunotherapy? It’s the technique by which the power of the immune system is harnessed to attack cancer. It’s already used in many cancer treatments, but it tends to be a second-line approach or reserved for advanced disease. In 2016, we’ll see more immunotherapy treatments approved and they will likely become the first-line choice in many cancers.

We can also expect to see more cell-mediated therapies — engineering a patient’s own immune cells to attack cancer — added to the cancer armamentarium. And expect to hear more about epigenetics — using the cancer cell’s genetic programming to push it back toward normalcy.

Recently, the American Association for Cancer Research convened an international immunotherapy conference, which completely sold out. One of the biggest stories to emerge was how chemotherapy resistance can be overcome using engineered proteins. Resistance is an all-too-common problem that dampens the hopes of precision medicine. These proteins, which are smaller than antibodies, will bring immunotherapy to new levels in 2016.

New drug combinations, combining traditional chemotherapy with immunotherapy, will also blossom in 2016. Such approaches are already showing promise in lung cancer, prostate cancer and melanoma. And we can expect new vaccines against cancer to emerge in 2016.

2. Related: ‘Basket Studies,’ A New Approach to Clinical Trials

Traditional drug trials test a drug against a known cancer type. With the precision medicine revolution upon us, it has become evident that many cancers, regardless of type, often share the same genetic mutations. 2015 saw the first trials of using a drug in an off-label manner to target common mutations across cancers of many different organs. Such “basket trials,” I think, will explode in popularity in 2016 in an effort to bring greater patient access to drugs. This new clinical trial paradigm will become commonplace in 2016. Already the American Society of Clinical Oncology is sponsoring its first-ever basket trial, partnering with five drug companies. Expect preliminary results in 2016.

3. Leveraging Our Gut Microbes

A microbiologist points out an isolated E. coli growth on an agar plate. E. coli is a gut microbe that plays a major role in health and disease. (Elaine Thompson/AP)

A microbiologist points out an isolated E. coli growth on an agar plate. E. coli is a gut microbe that plays a major role in health and disease. (Elaine Thompson/AP)

The bacteria in the gut have long been known to play a role in the immune system and metabolism. Now, new research is showing that many diseases may be caused in part by gut microbes, and I expect the coming year to bring a flurry of new uses for these microbes.

One of the fasting-growing applications is the use of fecal transplants to treat the deadly Clostridium difficile infection. Other diseases such as inflammatory bowel disease, irritable bowel syndrome, autoimmune diseases and allergic disease will likely see bacteria-based treatment advances in 2016.

Recently, gut microbes have even been shown to reduce the side effects of chemotherapy. Perhaps most exciting are the ways in which these bacteria are detected. Traditional methods of bacterial culture will become replaced by genetic sequencing of bacterial DNA. Such powerful information is already showing early promise in helping to stem transmission of drug-resistant bacteria within and between hospitals, a major cause of illness and death.

Continue reading

Related:

Commentary: Despite Doubts Raised On Theranos, Great Need For Quick Diagnoses

Elizabeth Holmes is CEO of Theranos. (Greg Allen/Invision/AP)

Elizabeth Holmes is CEO of Theranos. (Greg Allen/Invision/AP)

It may be the most dramatic story to emerge yet from the booming biotech sector: the young billionaire in the black, Jobs-like turtleneck who was first touted as the “$9-billion woman” but has come under increasing fire recently for indications that her mysterious technology is not all she cracked it up to be.

In particular, The Wall Street Journal last week raised new doubts about Elizabeth Holmes’ company, Theranos, in a major investigative piece — prompting the company to respond that the story was “factually and scientifically erroneous.”

In the guest commentary below, three experts comment on the Theranos story as a reflection of the burgeoning field of “point-of-care” diagnostics. To understand how Theranos became so hot so fast, they write, it helps to understand the tremendous need for quick, on-the-spot tests for diseases from Ebola to strep throat.

By Drs. Catherine Klapperich, Charlotte Gaydos and John Parrish
Guest contributors

The recent news that the multibillion-dollar health care startup Theranos has potentially been overselling its ability to perform fast, “point-of-care” diagnostic testing using only a drop of a patient’s blood is disappointing to many test developers and health care providers.

Part of the reason CEO Elizabeth Holmes was able to raise an astonishing $400 million of investment money was due to the escalating demand from both health care providers and consumers for fast and reliable diagnostic testing that could be used in doctor’s offices, in the field, or even at home by patients themselves.

Simple-to-use cartridges, like today’s drugstore pregnancy tests, could be engineered to test for and monitor a variety of different conditions at much lower prices than similar tests that require samples to be sent off to a central lab with expensive equipment and highly skilled staff.

What if a colonoscopy or a mammogram could be replaced by a diagnostic blood test?

Technologies like these, often called point-of-care technologies, have the potential to revolutionize how we practice health care, both in this country and around the world.

In the United States, health care costs are rising, and expensive and overused clinical tests are often high-cost culprits. The effective use of point-of-care testing has the potential to lower these costs and to improve patient outcomes.

What if a colonoscopy or a mammogram could be replaced by a diagnostic blood test? The CDC reported in 2013 that more than 30 percent of adults in the U.S. aged 50-75 had not been tested for colorectal cancer as recommended. Imagine the office visits, patient inconvenience and human resources that could be saved if such a test were reliable, simple and routine. Continue reading

Personalized Cancer Test Pinpoints Best Drug For Patients

By Alison Bruzek

Cancer, whether in the pancreas, the ovaries or the liver, can take on different characteristics and spread in different ways. That’s why, unfortunately, there’s no one-size-fits-all drug to help patients fight back.

But a new, quick test can personalize treatment and help oncologists choose which chemotherapy route to take.

The test, called Dynamic BH3 Profiling, quickly predicts whether or not a drug will work for a patient by first trying that drug on a tumor sample in the lab. A paper describing the method, which researchers say could become more widespread within a couple of years, was published in the journal Cell this week.

The idea echoes how we choose the most effective antibiotics, says study author Dr. Anthony Letai, a cancer researcher with the Dana-Farber Cancer Institute.

A new tool for predicting relapse in acute myelogenous leukemia (AML) was developed by Dr. Anthony Letai (Courtesy of Dana-Farber Cancer Institute)

A new tool for predicting relapse in acute myelogenous leukemia (AML) was developed by Dr. Anthony Letai (Courtesy of Dana-Farber Cancer Institute)

“When we’re trying to choose antibiotics for people … we simply isolate the bacteria that’s causing the problem and expose it to all the drugs that are available,” he says. Then researchers choose the drugs that best put a lid on the multiplying bacteria.

“That has operated for many, many decades,” Letai says, “so we thought, why not do that for cancer cells?”

Letai’s team isn’t the first to think of this strategy. “People have tried to do this kind of thing in years past but there have been a variety of advances in technology … that make it more feasible this time around,” says Levi Garraway, a cancer researcher at Dana-Farber who was not involved with the study.

What’s different about Letai’s work is its speed: It can quickly determine whether a drug, or combination of drugs, is working. The test looks not at when the tumor cells are dead, but rather when they’re beginning to die.

The ‘Death Switch’

The researchers found that there is a point of no return, a threshold of doom, when cells begin to die that is indicative of their actual death. The team looked at varying types of cancer cells (breast, lung, melanoma) and saw that there was essentially a death switch that when flipped on, ensured the cell’s destruction.

Examining if a cancer drug flipped this switch, instead of waiting to see if the cells would eventually die, allowed the researchers to know, in about 16 to 24 hours, which drugs were working. Continue reading